
# Illinois EPA

Total Maximum Daily Load Development for the Upper Fox River/Chain O'Lakes Watershed and Upper Fox River/Flint Creek Watershed



September 11, 2019





# **Total Maximum Daily Load (TMDL) Process**

### Illinois EPA TMDL Overview

- What is a Total Maximum Daily Load
- TMDL vs. Load Reduction Strategy (LRS)
- Summary of Impairments
- TMDL and LRS Analysis
- Implementation Plan



# Two Principal Goals of the Clean Water Act

- Restore and maintain the chemical, physical, and biological integrity of the nation's water
- Where attainable, to achieve water quality that promotes protection and propagation of fish, shellfish, and wildlife, and provides for recreation in and on the water



# Water Quality Standards Consist of Three Elements

- The designated beneficial use or uses of a water body or segment of a water body
  - Recreation, aquatic life, food processing and public water supply, and aesthetic quality
- The water quality criteria that are necessary to protect the use or uses of that particular water body
  - Numeric or narrative standards
- An antidegradation policy
  - To ensure that improvements are conserved, maintained, and protected – usually via permits



### **TMDL Elements**

\*Parameters with Numeric Water Quality Standards

# $TMDL = LC = \sum WLA + \sum LA + MOS + RC$

- LC (Loading Capacity) the maximum amount of pollution loading a water body can receive without violating water quality standards
- WLA (Waste Load Allocation) the portion of the TMDL allocated to existing or future *point sources.* \*Reductions implemented through NPDES program
- LA (Load Allocation) the portion of the TMDL allocated to existing or future nonpoint sources and natural backgrounds. \*Reductions are voluntary.
- MOS (Margin of Safety) an accounting of uncertainty about the relationship between pollutant loads and receiving water quality
- RC (Reserve Capacity) portion of the load explicitly set aside to account for growth in the watershed



### **LRS Elements**

For Parameters without Numeric Water Quality Standards

# LRS Target = Loading Capacity

- Loading Capacity the maximum amount of pollution loading a water body can receive without violating narrative standards
- Target concentrations are developed by Illinois EPA using data from surrounding waterbodies that are currently supporting their designated uses
- LRS provides guidance for voluntary nonpoint source reductions



### Illinois EPA TMDL Development Process

Watershed Characterization, Data Analysis, Methodology Selection

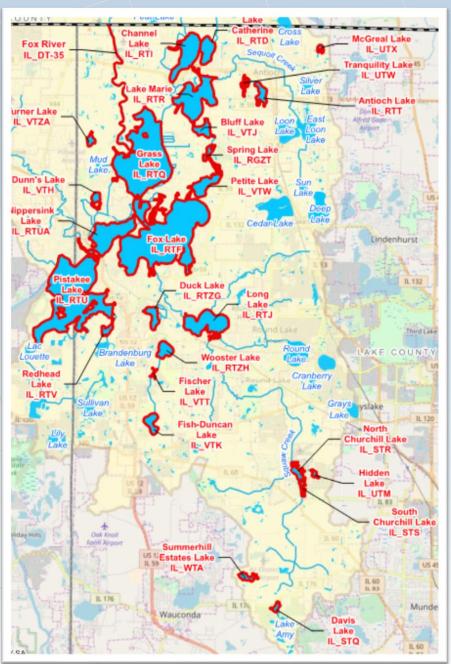
Stage 1: Both Reports Completed by AECOM in 2010

#### Data Collection (optional)

Stage 2: Additional Sampling Since 2010

#### Model Calibration, TMDL Scenarios, Implementation Plan

Stage 3: Results presented today




### Illinois EPA TMDLs

# **Stage 3 Report Contents**

- Section 1 Methodology Development
  - TMDL Overview
  - Model/Calculation Methodology and Development
- Section 2 Total Maximum Daily Loads
  - TMDL Endpoints and LRS Targets
  - Pollutant Sources
  - TMDL Allocations and Load Reduction Strategies
  - Section 3 Implementation Plan
    - BMP Recommendations
    - Planning Level Costs and Funding Sources
    - Milestones, Monitoring, and Success Criteria
- Section 4 References

CDM Smith



### Impairments

**Upper Fox River/Chain** O'Lakes Impaired Segments

- A total of 28 impaired lakes
  - Large portion of the overall Chain O' Lakes system
- One impaired segment of the Fox River (DT-35)



# **Upper Fox River/Chain O'Lakes TMDL Impairments**

| TMDL Parameters | Impaired Waterbodies           |                               |  |
|-----------------|--------------------------------|-------------------------------|--|
|                 | Antioch Lake (RTT)             | Lake Tranquility (UTW)        |  |
|                 | Bluff Lake (VTJ)               | Long Lake (RTJ)               |  |
|                 | Channel Lake (RTI)             | McGreal Lake (UTX)            |  |
|                 | Davis Lake (STQ)               | Nippersink Lake (RTUA)        |  |
|                 | Duck Lake (RTZG)               | North Churchill Lake (STR)    |  |
|                 | Dunn's Lake (VTH)              | Petite Lake (VTW)             |  |
| Phosphorus      | Fischer Lake (VTT)             | Pistakee Lake (RTU)           |  |
|                 | Fish-Duncan Lake (VTK)         | Redhead Lake (RTV)            |  |
|                 | Fox Lake (RTF)                 | South Churchill Lake (STS)    |  |
|                 | Grass Lake (RTQ)               | Spring Lake (RGZT)            |  |
|                 | Hidden Lake (UTM) <sup>1</sup> | Summerhill Estates Lake (WTA) |  |
|                 | Lake Catherine (RTD)           | Turner Lake (VTZA)            |  |
|                 | Lake Marie (RTR)               | Wooster Lake (RTZH)           |  |
| Fecal Coliform  | Deep Lake (VTD)                |                               |  |

<sup>1</sup> Waterbody also listed as impaired for Dissolved oxygen and pH. These impairments are directly related to excess nutrients (total phosphorus) in the waterbody and are addressed via total phosphorus TMDLs<sup>.</sup>

CDM Smith

# **Upper Fox River/Chain O'Lakes LRS Impairments**

| LRS Parameters                  | Impaired Waterbodies   |                               |  |
|---------------------------------|------------------------|-------------------------------|--|
|                                 | Antioch Lake (RTT)     | Nippersink Lake (RTUA)        |  |
|                                 | Bluff Lake (VTJ)       | North Churchill Lake (STR)    |  |
|                                 | Dunn's Lake (VTH)      | Pistakee Lake (RTU)           |  |
|                                 | Duck Lake (RTZG)       | Redhead Lake (RTV)            |  |
| Total Suspanded Solids          | Fish-Duncan Lake (VTK) | Round Lake (RTH)              |  |
| Total Suspended Solids<br>(TSS) | Fischer Lake (VTT)     | South Churchill Lake (STS)    |  |
|                                 | Fox Lake (RTF)         | Spring Lake (RGZT)            |  |
|                                 | Grass Lake (RTQ)       | Summerhill Estates Lake (WTA) |  |
|                                 | Hidden Lake (UTM)      | Lake Tranquility (UTW)        |  |
|                                 | Long Lake (RTJ)        | Turner Lake (VTZA)            |  |
|                                 | Lake Marie (RTR)       |                               |  |
| Sedimentation and Siltation     | Fox River (DT-35)      |                               |  |



#### Impairments



CDM Smith Upper Fox River/Flint Creek Watershed Impaired Segments

- A total of 13 impaired lakes
- One impaired segments of the Fox River (DT-22)

# **Upper Fox River/Flint Creek TMDL Impairments**

| TMDL                  |                        |                                             |  |
|-----------------------|------------------------|---------------------------------------------|--|
| Parameters            | Impaired Waterbodies   |                                             |  |
|                       | Lake Barrington (RTZT) | Lake Napa Suwe (STO)                        |  |
|                       | Drummond Lake (UTI)    | Lake Louise (VTZJ)                          |  |
|                       | Echo Lake (RTZR)       | Slocum Lake (RTP)                           |  |
| Phosphorus            | Grassy Lake (VTI)      | Timber Lake (South) (RTZQ)                  |  |
|                       | Honey Lake (RTZU)      | Tower Lake (RTZF)                           |  |
|                       | Island Lake (RTZI)     | Woodland (Highland) Lake (STV) <sup>1</sup> |  |
|                       | Lake Fairview (STK)    |                                             |  |
| Fecal Coliform        | Lake Barrington (RTZT) | Honey Lake (RTZU)                           |  |
| Chloride <sup>2</sup> | Fox River (DT-22)      |                                             |  |
| Copper <sup>2</sup>   | Fox River (DT-22)      |                                             |  |

<sup>1</sup> Waterbody also listed as impaired for dissolved oxygen. This impairment is directly related to excess nutrients (total phosphorus) in the waterbody and are addressed via total phosphorus TMDLs.

<sup>2</sup> Current impairment not confirmed. Delisting recommended.



# **Upper Fox River/Flint Creek LRS Impairments**

| LRS Parameters              | Impaired Waterbodies   |                                |  |
|-----------------------------|------------------------|--------------------------------|--|
|                             | Lake Barrington (RTZT) | Lake Napa Suwe (STO)           |  |
|                             | Drummond Lake (UTI)    | Lake Louise (VTZJ)             |  |
| Total Suspended Solids      | Echo Lake (RTZR)       | Slocum Lake (RTP)              |  |
| (TSS)                       | Grassy Lake (VTI)      | Timber Lake (South) (RTZQ)     |  |
|                             | Island Lake (RTZI)     | Tower Lake (RTZF)              |  |
|                             | Lake Fairview (STK)    | Woodland (Highland) Lake (STV) |  |
| Sedimentation and Siltation | n Fox River (DT-22)    |                                |  |



# **Water Quality Data Sources**

- Data compiled for each impaired waterbody during Stage 1 used in analysis
- Additional data collected by IEPA, Lake County, and others between Stage 1 and Stage 3 was incorporated as appropriate

| Alkalinity, Total                | Orthophosphate as P, Total    |
|----------------------------------|-------------------------------|
| Chloride                         | рН                            |
| Chlorophyll a                    | Phosphorus                    |
| Chlorophyll a, corrected         | Secchi                        |
| Dissolved Oxygen (DO)            | Solids, Dissolved             |
| E. coli                          | Solids, Fixed                 |
| Fecal Coliform                   | Solids, Suspended Volatile    |
| Nitrogen, ammonia as N           | Solids, Total                 |
| Nitrogen, Nitrite + Nitrate as N | Solids, Total Suspended (TSS) |
| Nitrogen, Nitrate as N           | Solids, Total Volatile        |
| Nitrogen, Nitrite as N           | Specific Conductivity         |
| Nitrogen, Total Kjeldahl         | Temperature                   |
| Orthophosphate as P, Dissolved   | Copper, Dissolved             |



### **Flow and Hydraulic Data Sources**

- Thirteen active USGS Gages in the watersheds near impaired waterbodies
- Primary gages used in analyses include:
  - 05550001 Fox River at Algonquin, IL
  - 05545750 Fox River near New Munster, WI
  - 05527950 Mill Creek at Old Mill Creek, IL
  - 05548280 Nippersink Creek
  - 05547755 Squaw Creek

Area Ratio Method: Flow Estimates for Ungaged Basins

 $Q_{ungaged} = Q_{gaged} \times A_{ungaged} / A_{gaged}$ 

• Factors to consider in surrogate gage selection include: proximity, land use, and relative basin size



## **Point Source Discharges**

NPDES Permitted Facilities discharging upstream of impaired segments in the Upper Fox River/Chain O'Lakes Watershed:

| <b>NPDES Permit Number</b> | Facility                                 |
|----------------------------|------------------------------------------|
| IL0045144                  | Village of Fox Lake-Tall Oaks STP        |
| IL0034746                  | Fremont School District #79              |
| IL0046043                  | Camp Hickory                             |
| IL0050661                  | Dayspring Bible College and Seminary STP |
| IL0054615                  | Camp Henry Horner STP                    |
| IL0020354                  | Village of Antioch STP                   |
| IL0026093                  | Village of Richmond STP                  |
| IL0026433                  | Village of Hebron WWTP                   |
| IL0031861                  | City of Woodstock-North STP              |
| IL0074985                  | Spring Grove STP                         |



# **Point Source Discharges**

NPDES Permitted Facilities discharging upstream of impaired segments in the Upper Fox River/Flint Creek Watershed:

| NPDES Permit Number | Facility                               |
|---------------------|----------------------------------------|
| IL0001716           | Rohm & Haas Chemical, LLC              |
| IL0020109           | Wauconda Village WWTF                  |
| IL0021067           | City of McHenry Central WWTP           |
| IL0027286           | Mount Saint Joseph Home STP            |
| IL0031933           | Northern Moraine WW Rec Dist WWTP      |
| IL0038202           | IAWC-Terra Cotta STP                   |
| IL0053457           | City of Crystal Lake WWTP #3           |
| IL0065480           | Snap-On Tools Co                       |
| IL0070874           | Port Barrington Shores STP             |
| IL0072851           | Mathews Company                        |
| IL0074969           | Johnsburg STP, Village Of              |
| IL0075973           | Oak Creek Townhomes WWTF               |
| IL0077836           | Wonder Lake Water Reclamation Facility |
| IL0079553           | Huntsman International LLC             |
| IL0024716           | North Barrington Elementary School STP |
| IL0027286           | Mount Saint Joseph Home-STP            |

CDM Smith

# Applicable Water Quality Targets: TMDL Parameters

| Parameter         | Water Quality Standard                       |
|-------------------|----------------------------------------------|
| Fecal Coliform    | 200 cfu/100mL (geometric mean <sup>1</sup> ) |
| Chloride          | 500 mg/L                                     |
| Copper, Dissolved | 18.6 mg/L (lowest calculated standard)       |
| Total Phosphorus  | 0.05 mg/L (Lakes/Impoundments only)          |

<sup>1</sup>Geometric mean based on minimum of five samples taken over not more than a 30-day period.

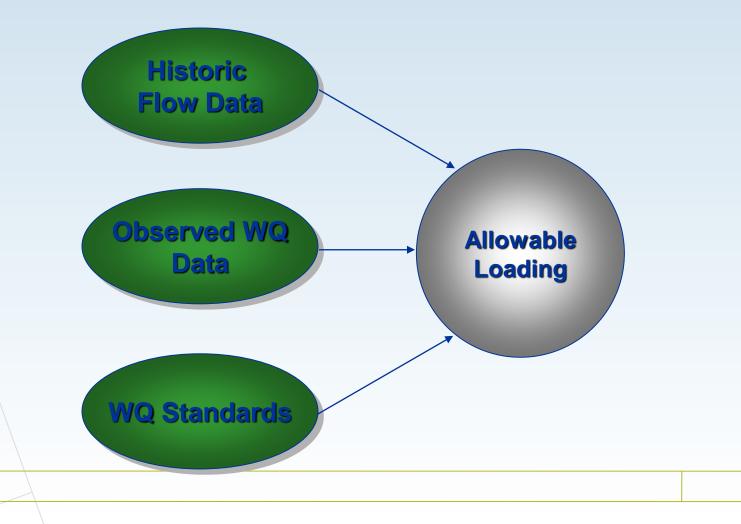


# Applicable Water Quality Targets: LRS Parameters

| Parameter               | Chain O'Lakes                                            | Flint Creek                                             |  |
|-------------------------|----------------------------------------------------------|---------------------------------------------------------|--|
| Sedimentation/Siltation | <b>13.6 mg/L</b> as Non-Volatile Suspended Solids (NVSS) | <b>7.0 mg/L</b> as Non-Volatile Suspended Solids (NVSS) |  |
| Total Suspended Solids  | 18.2 mg/L                                                | 11.3 mg/L                                               |  |

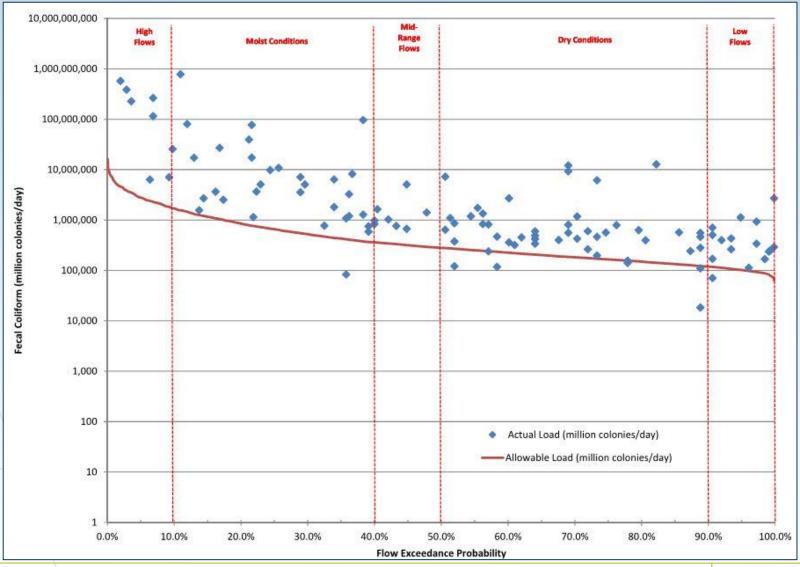
Note: LRS Parameters do not have numeric water quality standards. Targets are watershedspecific and are based on assessment of unimpaired waterbodies in each HUC 10 Basin




# **Methodology Overview**

| Waterbody<br>Type      | Potential Causes of<br>Impairment                   | Stage 3<br>Assessment             | Methodology                                     |
|------------------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------------|
|                        | Fecal Coliform                                      | TMDL                              | Load Duration Curve                             |
|                        | Chloride<br>(Fox River DT-22)                       | No TMDL<br>Developed <sup>1</sup> | Load Duration Curve                             |
| Streams                | Copper<br>(Fox River DT-22)                         | No TMDL<br>Developed <sup>1</sup> | Load Duration Curve                             |
|                        | Sedimentation & Siltation                           | LRS                               | Load Duration Curve                             |
|                        | Total Phosphorus                                    | TMDL                              | Simplified Lake Analysis Model<br>(SLAM)        |
| Lakes/<br>Impoundments | Dissolved Oxygen<br>(Woodland Lake, Hidden<br>Lake) | No TMDL<br>Developed              | Impairment addressed<br>through phosphorus TMDL |
|                        | TSS                                                 | LRS                               | Spreadsheet Loading Analysis                    |

<sup>1</sup> Current impairment not confirmed during assessment, recommend delisting




Streams - Load Duration Curves (LDC) Fecal Coliform, Chloride, Copper & Sedimentation/Siltation



CDM Smith

### Load Duration Curve Example



CDM Smith

# **Load Duration Curve Interpretation**

|                          | Duration Curve Zone |       |       |     |      |
|--------------------------|---------------------|-------|-------|-----|------|
|                          | High                |       | Mid-  |     | Low  |
| Contributing Source Area | Flow                | Moist | Range | Dry | Flow |
| Point Source             |                     |       |       | Μ   | Н    |
| Onsite Wastewater        |                     |       |       |     |      |
| System                   |                     |       | H     | Μ   |      |
| Riparian Areas           |                     | Н     | Н     | Н   |      |
| Stormwater: Impervious   |                     |       |       |     |      |
| Areas                    |                     | Н     | Н     | Н   |      |
| Combined sewer           |                     |       |       |     |      |
| overflows                | Н                   | Н     | Н     |     |      |
| Stormwater: Upland       | Н                   | н     | Μ     |     |      |
| Bank Erosion             | Н                   | М     |       |     |      |



## **Loading Capacities**

#### **Fecal Coliform Estimated Mean Load Capacity** Daily Flow (cfs) (mil.col /day) 1 4,894 10 24,466 50 48,932 100 244,663 500 489,332 1,000 2,446,689 5,000 4,893,434

| Chloride                           |                            |  |
|------------------------------------|----------------------------|--|
| Estimated Mean<br>Daily Flow (cfs) | Load Capacity<br>(lbs/day) |  |
| 1                                  | 2,695                      |  |
| 10                                 | 26,953                     |  |
| 50                                 | 134,764                    |  |
| 100                                | 269,529                    |  |
| 500                                | 1,347,643                  |  |
| 1,000                              | 2,695,286                  |  |
| 5,000                              | 13,476,428                 |  |

Note: Segments listed for Chloride and Copper are recommended for delisting based on lack of current impairment, additional TMDL components not calculated.

| Dissolved Copper                   |                            |  |  |  |
|------------------------------------|----------------------------|--|--|--|
| Estimated Mean<br>Daily Flow (cfs) | Load Capacity<br>(lbs/day) |  |  |  |
| 1                                  | 101                        |  |  |  |
| 10                                 | 1,002                      |  |  |  |
| 50                                 | 5,014                      |  |  |  |
| 100                                | 10,025                     |  |  |  |
| 500                                | 50,132                     |  |  |  |
| 1,000                              | 100,265                    |  |  |  |
| 5,000                              | 1,002,646                  |  |  |  |
|                                    |                            |  |  |  |



# Loading Capacities-LRS Parameters

| NVSS<br>(Fox River/Chain O'Lakes)  |                             |                                    | NVSS<br>(Fox River/Flint Creek) |  |  |
|------------------------------------|-----------------------------|------------------------------------|---------------------------------|--|--|
| Estimated Mean<br>Daily Flow (cfs) | Load Capacity<br>(lbs /day) | Estimated Mean<br>Daily Flow (cfs) | Load Capacity<br>(lbs /day)     |  |  |
| 1                                  | 38                          | 1                                  | 74                              |  |  |
| 10                                 | 377                         | 10                                 | 732                             |  |  |
| 50                                 | 1,887                       | 50                                 | 3,666                           |  |  |
| 100                                | 3,773                       | 100                                | 7,330                           |  |  |
| 500                                | 18,867                      | 500                                | 36,656                          |  |  |
| 1,000                              | 37,734                      | 1,000                              | 73,312                          |  |  |
| 10,000                             | 377,340                     | 10,000                             | 733,118                         |  |  |

Note: LRS target load calculations are equivalent to loading capacities at a given flow range and do not include WLA, LA, MOS, RC allocations



# LDC Seasonal Variation and Margin of Safety

#### Seasonal Variation

- Inherent in the load duration analysis due to the load duration analysis representing the range of expected stream flows
  - Critical Period for fecal coliform is primary contact recreation season (May – October)
  - Flow and concentration data trimmed to critical period for LDC analyses
- Margin of Safety (MOS)
  - An explicit 10% MOS was included to account for data variability and uncertainty



# Fecal Coliform Waste Load Allocation (WLA)

#### Individual NPDES Permitted Facilities

- No permitted dischargers in impaired subbasins with discharges of fecal coliform
- MS4 Discharges
  - Represent runoff from municipal areas with separate stormwater sewer systems
  - Multiple municipalities in each segment's sub-watershed
  - Initial allocations based on proportion of watershed in each municipal area

| NPDES ID  | Source           | Municipal Area in<br>Subbasin (acres) | Percent of Total Municipal<br>Area in Subbasin | Fecal Coliform MS4<br>Allocation<br>(mil col/day) |
|-----------|------------------|---------------------------------------|------------------------------------------------|---------------------------------------------------|
| ILR400209 | Hawthorn Woods   | 422                                   | 27%                                            | 2,681                                             |
| ILR400216 | Lake Barrington  | 543                                   | 35%                                            | 3,449                                             |
| ILR400228 | North Barrington | 114                                   | 7.3%                                           | 725                                               |
| ILR400249 | Tower Lakes      | 483                                   | 31%                                            | 3,069                                             |
| ILR400501 | Wauconda         | 3.3                                   | 0.2%                                           | 21                                                |
| Total MS4 |                  | 1,565                                 | 100%                                           | 9,945                                             |

Table 2-36 Allocation Summary for MS4s in the Tower Lake Watershed



## **Fecal Coliform Reserve Capacity**

- A portion of a TMDL's LC may be set as a RC to allow for future population growth and development potentially leading to increased pollutant loads in the future.
- Not included for fecal coliform TMDL calculations due to lack of existing individual NPDES permitted facilities discharging fecal coliform to impaired subbasins

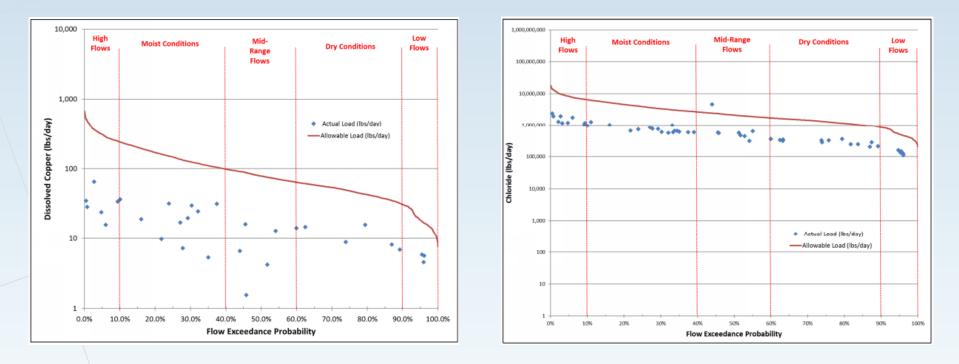


### Fecal Coliform TMDL Table


### Fox River DT-22

| Zone       | Flow Exceedance<br>Range (%) | LC<br>(mil col/day) | LA<br>(mil col/day) | WLA<br>(mil col/day) | MOS       | Actual Load <sup>1</sup><br>(mil col/day) | Percent<br>Reduction<br>Needed (%) |
|------------|------------------------------|---------------------|---------------------|----------------------|-----------|-------------------------------------------|------------------------------------|
| High       | 0 - 10                       | 15,499,866          | 10,946,984          | 3,002,895            | 1,549,987 | 121,377,401                               | 87%                                |
|            | 10 - 20                      | 8,844,162           | 6,113,001           | 1,846,744            | 884,416   | no data                                   | no data                            |
| Moist      | 20 - 30                      | 6,508,054           | 4,416,305           | 1,440,943            | 650,805   | 18,392,022                                | 65%                                |
|            | 30 - 40                      | 4,789,031           | 3,167,793           | 1,142,335            | 478,903   | 812,008                                   | 0%                                 |
| Mid-Range  | 40 - 50                      | 3,598,938           | 2,501,136           | 737,908              | 359,894   | no data                                   | no data                            |
| Mid-Nalige | 50 - 60                      | 2,928,960           | 2,496,356           | 139,708              | 292,896   | 111,400,261                               | 97%                                |
|            | 60 - 70                      | 2,404,438           | 2,024,286           | 139,708              | 240,444   | 487,058                                   | 0%                                 |
| Dry        | 70 - 80                      | 1,888,731           | 1,560,150           | 139,708              | 188,873   | 586,664                                   | 0%                                 |
|            | 80 - 90                      | 1,439,140           | 1,155,518           | 139,708              | 143,914   | 125,854                                   | 0%                                 |
| Low Flow   | 90 - 100                     | 738,308             | 524,769             | 139,708              | 73,831    | 761,347                                   | 3%                                 |

<sup>1</sup>Actual Load was calculated using the 90th percentile of observed fecal coliform concentrations in a given flow range (EPA 2007)




### Fecal Coliform Load Duration Curve Fox River DT-22





### Other TMDL Load Duration Curves Fox River DT-22

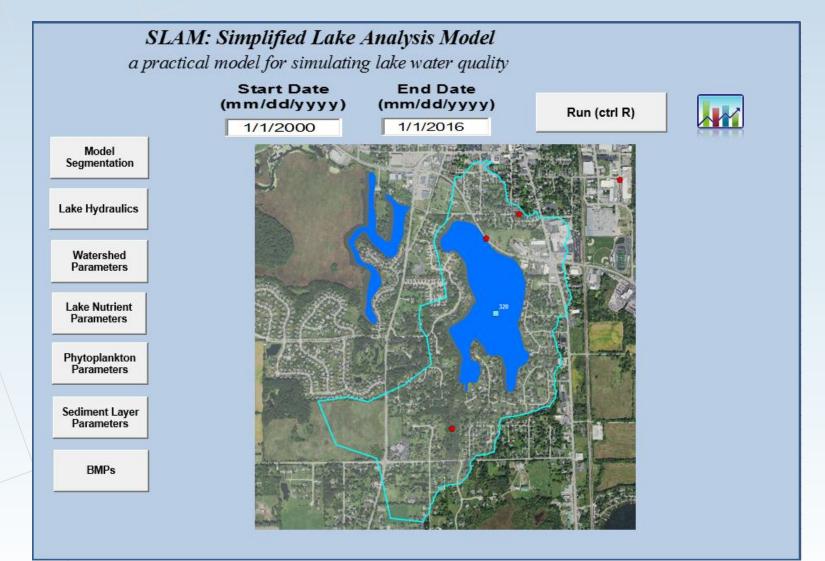


Copper

Chloride

Note: Current impairments not confirmed




# Sedimentation/Siltation LRS Target Table Fox River DT-22

| Zone      | Flow Exceedance Range<br>(%) | Target Loading<br>Capacity<br>(Ibs/day of NVSS) | Current Load <sup>1</sup><br>(Ibs/day of NVSS) | Percent Reduction<br>Needed (%) |
|-----------|------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------|
| High      | 0 - 10                       | 115,437                                         | 441,772                                        | 74%                             |
|           | 10 - 20                      | 75,672                                          | 135,303                                        | 44%                             |
| Moist     | 20 - 30                      | 54,940                                          | 152,116                                        | 64%                             |
|           | 30 - 40                      | 41,345                                          | 90,176                                         | 54%                             |
| Mid-Range | 40 - 50                      | 33,562                                          | 14,570                                         | 0%                              |
|           | 50 - 60                      | 26,425                                          | 77,437                                         | 66%                             |
|           | 60 - 70                      | 22,041                                          | 44,220                                         | 50%                             |
| Dry       | 70 - 80                      | 18,200                                          | 27,019                                         | 33%                             |
|           | 80 - 90                      | 14,088                                          | 38,707                                         | 64%                             |
| Low Flow  | 90 - 100                     | 7,001                                           | 27,435                                         | 74%                             |



### **SLAM Analyses**

## **SLAM Analysis for Phosphorus in Lakes**





### **SLAM Analyses**

# **SLAM Model for TP in Lakes**

- SLAM Simplified Lake Analysis Model
- Developed for TMDL analysis of lakes and impoundments
- Represents nutrient and phytoplankton dynamics
- Builds on USEPA's BATHTUB model algorithms, but also includes:
  - Explicit modeling of lake and sediment interactions
  - Daily time-steps for inputs and outputs
  - Ability to link inputs/outputs from discrete models
  - Used to model total phosphorus impairments for all impaired lakes in both watersheds (41 total lakes)



### **SLAM Analyses**

# Linked SLAM Inputs/Outputs for Chain O'Lakes

| Waterbody Grouping within<br>Discrete Models Upstream Contributing Lake(s) |                                                               | Downstream Receiving Lake(s) |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|--|
| Antioch Lake                                                               | -                                                             | Lake Tranquility             |  |
| Bluff Lake                                                                 | Lake Marie                                                    | Spring Lake                  |  |
| Lake Catherine and Channel Lake                                            | -                                                             | Lake Marie                   |  |
| Davis Lake                                                                 | -                                                             | -                            |  |
| Duck Lake                                                                  | Wooster Lake                                                  | Fox Lake                     |  |
| Dunn's Lake                                                                | -                                                             | Nippersink Lake              |  |
| Fischer Lake                                                               | Fish-Duncan Lake                                              | Wooster Lake                 |  |
| Fish-Duncan Lake                                                           | -                                                             | Fischer Lake                 |  |
| Fox Lake and Nippersink Lake                                               | Grass Lake, Petite Lake, Duck Lake,<br>Dunn's Lake, Long Lake | Pistakee Lake                |  |
| Grass Lake                                                                 | Lake Marie                                                    | Nippersink Lake; Fox Lake    |  |
| Hidden Lake                                                                | -                                                             | -                            |  |
| Long Lake                                                                  | -                                                             | Fox Lake                     |  |
| Lake Marie                                                                 | Lake Catherine and Channel Lake,<br>Lake Tranquility          | Grass Lake; Bluff Lake       |  |
| McGreal Lake                                                               | -                                                             | -                            |  |
| North and South Churchill Lake                                             | -                                                             | -                            |  |
| Petite Lake                                                                | Spring Lake                                                   | Fox Lake                     |  |
| Pistakee Lake                                                              | Nippersink Lake, Redhead Lake                                 | -                            |  |
| Redhead Lake                                                               | -                                                             | Pistakee Lake                |  |
| Spring Lake                                                                | Bluff Lake                                                    | Petite Lake                  |  |
| Summerhill Estates Lake                                                    | -                                                             | -                            |  |
| Lake Tranquility                                                           | Antioch Lake                                                  | Lake Marie                   |  |
| Turner Lake                                                                | -                                                             | -                            |  |
| Wooster Lake                                                               | Fischer Lake                                                  | Duck Lake                    |  |



### **SLAM Model Inputs**

- Lake morphology and hydraulics: surface area, average and maximum depth, volume, inflows, mixing lengths, and thermal stratification
- <u>Model segmentation</u>: number of geographically distinct segments of a reservoir to be modeled, flow direction, and an estimate of longitudinal dispersion between segments
- <u>Watershed inflows</u>: estimated runoff and point source discharge into the reservoir's watershed, and average annual phosphorus load to each segment as a function of land use using runoff coefficients and point source data
- <u>In-lake nutrients</u>: initial nutrient concentrations in the lake; estimates of settling velocity nutrient uptake; and burial fractions. Seasonality factors may be included to account for expected variations in settling velocity and nutrient uptake over time.
- <u>Sediment layer dynamics</u>: sediment characteristics used for calculating nutrient fluxes, or seasonally prescribed nutrient fluxes can be used.



## Total Phosphorus Loading Capacity Fox River/Flint Creek Watershed

| Waterbody                | Segment | Total Phosphorus Loading<br>Capacity (lbs/day) |
|--------------------------|---------|------------------------------------------------|
| Lake Barrington          | RTZT    | 0.656                                          |
| Drummond Lake            | UTI     | 0.124                                          |
| Echo Lake                | RTZR    | 0.582                                          |
| Grassy Lake              | VTI     | 1.497                                          |
| Honey Lake               | RTZU    | 0.654                                          |
| Island Lake              | RTZI    | 2.297                                          |
| Lake Fairview            | STK     | 1.127                                          |
| Lake Napa Suwe           | STO     | 0.415                                          |
| Lake Louise              | VTZJ    | 0.392                                          |
| Slocum Lake              | RTP     | 2.660                                          |
| Lake Louise              | VTZJ    | 0.390                                          |
| Timber Lake (South)      | RTZQ    | 0.550                                          |
| Slocum Lake              | RTP     | 2.665                                          |
| Timber Lake (South)      | RTZQ    | 0.548                                          |
| Tower Lake               | RTZF    | 1.121                                          |
| Woodland (Highland) Lake | STV     | 0.038                                          |



Segment

Loading Capacity (lbs/day)

## **Total Phosphorus Loading Capacity Fox River/Chain O'Lakes Watershed**

| Waterbody        | Segment | Loading<br>Capacity<br>(Ibs/day) | Waterbody          |
|------------------|---------|----------------------------------|--------------------|
| Antioch Lake     | RTT     | 0.60                             | McGreal Lake       |
| Bluff Lake       | VTJ     | 2.88                             | Nippersink Lake    |
| Lake Catherine   | RTD     | 4.83                             | North Churchill La |
| Channel Lake     | RTI     | 6.80                             | Petite Lake        |
| Davis Lake       | STQ     | 0.30                             | Pistakee Lake      |
| Duck Lake        | RTZG    | 2.98                             | Redhead Lake       |
| Dunn's Lake      | VTH     | 0.79                             |                    |
| Fischer Lake     | VTT     | 1.22                             | South Churchill La |
| Fish-Duncan Lake | VTK     | 1.77                             | Spring Lake        |
| Fox Lake         | RTF     | 54.4                             | Summerhill Estate  |
| Grass Lake       | RTQ     | 101.1                            | Lake               |
| Hidden Lake      | UTM     | 0.10                             | Lake Tranquility   |
| Long Lake        | RTJ     | 13.2                             | Turner Lake        |
| Lake Marie       | RTR     | 11.3                             | Wooster Lake       |

| watchoody                       | Jegment     |              |
|---------------------------------|-------------|--------------|
| McGreal Lake                    | UTX         | 0.19         |
| Nippersink Lake                 | RTUA        | 49.1         |
|                                 |             |              |
| North Churchill Lake            | STR         | 0.51         |
| Petite Lake                     | VTW         | 4.73         |
| Pistakee Lake                   | RTU         | 149          |
| Redhead Lake                    | RTV         | 0.54         |
|                                 |             |              |
| South Churchill Lake            | STS         | 0.39         |
| Spring Lake                     | RGZT        | 1.72         |
| Summerhill Estates              |             |              |
| Lake                            | WTA         | 0.20         |
|                                 |             |              |
| Lake Tranquility                | UTW         | 0.41         |
| Lake Tranquility<br>Turner Lake | UTW<br>VTZA | 0.41<br>0.60 |



## Total Phosphorus Seasonal Variation and Margin of Safety

- Seasonal Variation
  - Accounted for by developing the model and performing all calculations of load on a multi-year basis.
  - Modeling was performed to project over a 16-year period (2000-2015)
- Margin of Safety (MOS)
  - Both Implicit and Explicit
  - Implicit conservative assumptions and model coefficients used
  - Explicit an additional 10% MOS was included to account for data variability and uncertainty



### **Total Phosphorus Waste Load Allocation (WLA)**

- Individual NPDES Permitted Facilities
  - Two facilities contributing to lakes in Flint Creek Watershed
  - Ten facilities contributing to lakes in Chain O'Lakes Watershed

#### Fox River/Flint Creek Individual Permitted WLAs

| NPDES<br>Permit<br>Number | Permit Name                            | Sub-<br>watershed | Estimated<br>Total<br>Phosphorus<br>Concentration<br>(mg/L) | DAF (MGD) | WLA-DAF <sup>1</sup><br>(lbs/day) |
|---------------------------|----------------------------------------|-------------------|-------------------------------------------------------------|-----------|-----------------------------------|
| IL0024716                 | North Barrington Elementary School STP | Grassy Lake       | 7.0 <sup>1</sup>                                            | 0.005     | 0.292                             |
| IL0027286                 | Mount Saint Joseph Home-STP            | Grassy Lake       | 5.0 <sup>1</sup>                                            | 0.0125    | 0.521                             |
|                           |                                        |                   |                                                             | Total WLA | 0.813                             |

<sup>1</sup> Facility does not have permit limits for total phosphorus, but may have potential to discharge phosphorus in effluent. Estimated discharge concentrations derived using data for comparable facilities with similar treatment processes.



### **Total Phosphorus Waste Load Allocation (WLA)**

#### Fox River/Chain O'Lakes Individual Permitted WLAs

|                           |                                                            |                        | Model                                           | Calibration                                                    |              | L/WLA<br>lations                              |                     |
|---------------------------|------------------------------------------------------------|------------------------|-------------------------------------------------|----------------------------------------------------------------|--------------|-----------------------------------------------|---------------------|
| NPDES<br>Permit<br>Number | Facility Name                                              | Impacted<br>Lake/Model | Current<br>Average<br>Measured<br>Flow<br>(MGD) | Current<br>Average<br>Effluent<br>Concentration<br>(mg/L of P) | DAF<br>(MGD) | Permit<br>Effluent<br>Limit<br>(mg/L of<br>P) | WLA<br>(lbs/day)    |
| IL0045144                 | Village of Fox Lake-Tall<br>Oaks STP                       | Dunn's Lake            | 0.152                                           | 0.480                                                          | 0.5          | 1.0                                           | 0.63(1)             |
| IL0034746                 | Fremont School District<br>#79 <sup>(2)</sup>              | Long Lake              | 0.005                                           | 5.0 <sup>(3)</sup>                                             | 0.01         | n/a                                           | 0.42                |
| IL0046043                 | Camp Hickory <sup>(2)</sup>                                | Long Lake              | 0.014                                           | 5.0(3)                                                         | 0.014        | n/a                                           | 0.58                |
| IL0050661                 | Dayspring Bible College<br>and Seminary STP <sup>(2)</sup> | Long Lake              | 0.009                                           | 5.0 <sup>(3)</sup>                                             | 0.03         | n/a                                           | 1.25                |
| IL0054615                 | Camp Henry Horner STP                                      | Wooster<br>Lake        | 0.0014                                          | 3.872                                                          | 0.014        | n/a                                           | 0.45 <sup>(4)</sup> |
| IL0020354                 | Village of Antioch STP                                     | Lake Marie             | 1.32                                            | 0.752                                                          | 2.0          | 1.0                                           | 8.26(1)             |
| IL0026093                 | Village of Richmond STP                                    | Pistakee<br>Lake       | 0.311                                           | 0.586                                                          | 0.5          | 1.0                                           | 4.17                |
| IL0026433                 | Village of Hebron WWTP                                     | Pistakee<br>Lake       | 0.078                                           | 0.502                                                          | 0.33         | 1.0                                           | 2.75                |
| IL0031861                 | City of Woodstock-North<br>STP                             | Pistakee<br>Lake       | 2.175                                           | 0.578                                                          | 3.5          | 1.0                                           | 29.2                |
| IL0074985                 | Spring Grove STP                                           | Pistakee<br>Lake       | 0.042                                           | 5.0 <sup>(3)</sup>                                             | 0.075        | n/a                                           | 3.13                |



### **Total Phosphorus Waste Load Allocation (WLA)**

#### MS4 Discharges

- Represent runoff from municipal areas with separate stormwater sewer systems
- Multiple municipalities in many of the lake watersheds
- 100% of the watershed may be within a MS4 permitted municipal area in some cases
- Allocations based on proportion of watershed in each municipal area

#### Table 2-23 Allocation Summary for MS4s in the Wooster Lake Watershed

| Source             | NPDES ID  | Municipal Area in<br>Subbasin (acres) | Percent of Total Subbasin<br>Area | Total Phosphorus<br>WLA (lbs/day) |
|--------------------|-----------|---------------------------------------|-----------------------------------|-----------------------------------|
| Fox Lake Village   | ILR400339 | 132                                   | 25.0%                             | 0.047                             |
| Round Lake Village | ILR400243 | 78.9                                  | 15.0%                             | 0.028                             |
| Volo Village       | ILR400657 | 6.3                                   | 1.2%                              | 0.002                             |
| Total MS4          |           | 217                                   | 41.1%                             | 0.078                             |



### **Total Phosphorus Reserve Capacity**

- A portion of a TMDL's LC may be set as a RC to allow for future population growth and development potentially leading to increased pollutant loads in the future.
- Explicit RC was not included in the total phosphorus TMDL calculations for lakes without POTWs or other point sources that may be expected to increase discharge as a result of projected population growth in the area.
  - Implicit RC included for Long, Pistakee, and Wooster Lakes through using permitted facility design flows as TMDL model inputs which are considerably greater than existing discharge flows used in calibration models.
    - Room for growth built in to the permits already



#### Example Total Phosphorus TMDL for Lakes

#### Table 2-39 TMDL Summary for North (STR) and South Churchill (STS) Lakes

| Segment           | Loading<br>Source | LC<br>(Ibs/day) | WLA-<br>MS4s<br>(lbs/day) | WLA-<br>Facilities<br>(lbs/day) | LA<br>(Ibs/day) | MOS<br>(10% of LC) | Current<br>Load<br>(Ibs/day) | Reduction<br>Needed<br>(Ibs/day) | Reduction<br>Needed<br>(Percent) |
|-------------------|-------------------|-----------------|---------------------------|---------------------------------|-----------------|--------------------|------------------------------|----------------------------------|----------------------------------|
| North             | Internal          | 0.082           | -                         | -                               | 0.074           | 0.008              | 0.17                         | 0.09                             | 52%                              |
| Churchill         | External          | 0.43            | 0.39                      | 1                               | -               | 0.043              | 1.08                         | 0.65                             | 60%                              |
| Lake              | Total             | 0.51            | 0.39                      |                                 | 0.074           | 0.051              | 1.25                         | 0.74                             | 59%                              |
| South             | Internal          | 0.30            | -                         | -                               | 0.27            | 0.030              | 0.62                         | 0.32                             | 52%                              |
| Churchill         | External          | 0.091           | 0.034                     |                                 | 0.049           | 0.009              | 0.18                         | 0.09                             | 50%                              |
| Lake              | Total             | 0.39            | 0.034                     | -                               | 0.32            | 0.039              | 0.80                         | 0.41                             | 52%                              |
| Combined<br>Total | Internal          | 0.38            |                           | -                               | 0.34            | 0.038              | 0.79                         | 0.41                             | 52%                              |
|                   | External          | 0.52            | 0.42                      | -                               | 0.049           | 0.052              | 1.26                         | 0.74                             | 59%                              |
| Total             | Total             | 0.90            | 0.42                      | -                               | 0.39            | 0.090              | 2.05                         | 1.15                             | 56%                              |

 Overall phosphorus reductions needed in impaired lakes range from 15% to 85%



### Lake TSS Analyses

## Spreadsheet Loading Analysis TSS in Lakes

- For Developing LRS for TSS impaired lakes
  - 21 TSS impairments in the Chain O'Lakes Watershed
  - 12 TSS impairments in the Upper Fox/Flint Creek Watershed
- Spreadsheet calculations:
  - Using inputs and data developed through SLAM assessments (flow, volume, loads, etc.)
  - Calculate current loads and loading capacity to determine load reduction requirements

#### Table 2-42 LRS Summary for TSS in Lake Barrington

| Location | Target<br>Concentration<br>(mg/L) | Existing<br>Concentration <sup>1</sup><br>(mg/L) | Average Overland<br>and Tributary<br>Flow (cfs) | Target Loading<br>Capacity<br>(Ibs/day) | Current Load <sup>1</sup><br>(lbs/day) | Percent<br>Reduction<br>Needed (%) |
|----------|-----------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------|
| RTZT     | 11.3                              | 13.0                                             | 0.4                                             | 24                                      | 27                                     | 13%                                |

<sup>1</sup>Existing Concentration was calculated using the 90<sup>th</sup> percentile of observed TSS concentrations in a given location (USEPA 2007)



### Implementation Plan for Upper Fox River Watersheds

- Identify Best Management Practices (BMPs) to help meet water quality criteria
- Provides general watershed-wide implementation strategies
- USEPA nine minimum elements of a watershed plan
- Intended to supplement existing watershed plans
- Additional input from public on site-specific practices and plans can be included in final plan



## Existing Watershed Planning Documents Chain O'Lakes Watershed

- Fish Lake Drain Watershed Management Plan (Lake County Stormwater Management Commission [LCSMC] 2008)
- Squaw Creek Watershed Management Plan (LCSMC 2004a)
- Letter to IEPA regarding stakeholder priority projects for Long Lake (Illinois Sierra Club 2017)
- Sequoit Creek Watershed Management Plan (LCSMC 2004b)
- Lake Catherine/Channel Lake-Lake Management Plan (Friends of Lake Catherine & Channel Lakes 2017)
- The Nippersink Creek Watershed Plan (Watershed Resource Consultants, Inc. Fluid Clarity, Ltd, and The Nippersink Creek Watershed Planning Committee 2008)



## Existing Watershed Planning Documents Fox River/Flint Creek Watershed

- *9 Lakes Watershed-Based Plan* (Chicago Metropolitan Agency for Planning's [CMAP] 2014)
- Boone-Dutch Creek Watershed Plan (CMAP 2016)
- Silver Creek and Sleepy Hollow Creek Watershed Action Plan (CMAP 2011)



### **USEPA Nine Minimum Elements**

- 1. Identify causes and sources of pollution
- 2. Describe the nonpoint source BMPs needed
- 3. Estimate pollutant load reductions expected through BMPs
- 4. Estimate the level of technical assistance needed, associated costs, potential funding sources
- 5. Include public information/education component
- 6. Develop implementation schedule
- 7. Develop measurable interim milestones
- 8. Identify indicators of improvement
- 9. Develop a monitoring component



### **Adaptive Management**

#### Phased approach

- Acknowledges uncertainty about what policy or practice is "best"
- Thoughtful selection of the policies or practices to be applied
- Careful implementation designed to reveal the critical knowledge that may be currently lacking
- Monitoring of key response indicators
- Incorporation of the results into future decisions



### Implementation Plan

### Potential BMPs for Load Reductions

### <u>TSS</u>

- Filter strips
- Urban Reforestation/Riparian Buffer Restoration
- Wetlands
- Stormwater Retention Basins (dry and wet ponds)
- Vegetated Swales
- Permeable Pavement
- Sand Filters
- Compost Blankets, Filter Berms, and Filter Socks
- Rain Barrels/Rain Gardens/Green Roofs
- Bio-Retention Cells
- Streambank Stabilization and Erosion Control
- Street Sweeping
  CDM.

### **Phosphorus**

 Same as TSS, plus phosphorusbased lawn fertilizer restrictions

### Fecal Coliform

- Illicit discharge elimination
- Pet waste education
- Septic system maintenance

#### **Implementation Plan**

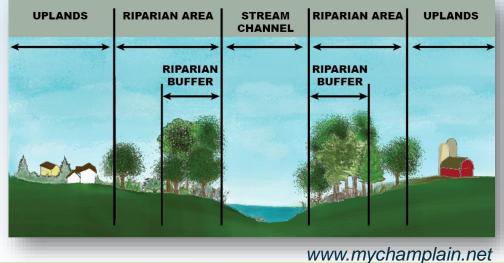
### **Potential BMPs**


#### **Filter Strips**

- Control contaminant levels by removing loads from runoff
- Filter strip widths based on slopes
- Varying slopes and soil types in watersheds

#### NRCS Filter Strip Flow Lengths Based on Slope

| Percent Slope | 0.5% | 1.0% | 2.0% | 3.0% | 4.0% | ≥ 5.0% |
|---------------|------|------|------|------|------|--------|
| Minimum (ft)  | 36   | 54   | 72   | 90   | 108  | 117    |
| Maximum (ft)  | 72   | 108  | 144  | 180  | 216  | 234    |





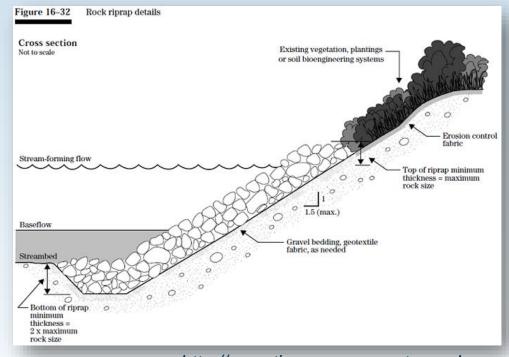

## Fox River/Chain O'Lakes – Filter Strip Example

### **Riparian Buffers**

- Control contaminants by filtering loads from runoff
- Enhanced infiltration of runoff
- Add stability to streambanks
- Reduce erosion
- Benefit aquatic life through water temperature and dissolved oxygen improvements
- Added benefits to wildlife






### **Stormwater Retention Basins**

- Trap sediment prior to reaching a receiving water
- Typically earthen embankments
- Release water slowly to filter sediments and slow high flows through the receiving water, reducing instream erosion



### **Streambank Stabilization/Erosion Control**

- Stone Toe Protection bank stabilization
- Rock Riffle Grade
  Control pool/riffle
  sequence
- Floodplain Excavation decrease bank slope



http://www.tippecanoecountyswcd.org



### **Cost Estimates of BMPs**

- Estimated costs for BMPs provided in Implementation Plans
  - NRCS EQIP repayment schedules
- Provided on a general per-unit basis (acre, site, etc.)
- Many costs are site-specific and can be highly variable



### Information and Education

- Public education and participation is key to successful implementation
- Increased public awareness can increase implementation of BMPs
- Small incremental improvements and individual adoption of BMPs can result in much lower costs
- Watershed groups, public meetings, ongoing efforts:
  - Fox Waterway Agency
  - Lake County Stormwater Management Commission (SMC)
  - Fox River Ecosystem Partnership
  - Flint Creek Watershed Partnership



#### **Implementation Plan**

### Funding Programs for Conservation/Implementation

- The Conservation Fund
- Streambank Stabilization and Restoration Program
- Clean Water Act Section 319 Grants
- Wetland Program Development Grants
- Rivers, Trails, and Conservation Assistance
- Great Lakes Restoration Initiative
- Agricultural Conservation Easement Program
- Environmental Quality Incentive Program



### **Local SWCD and NRCS Contact Information**

| County                          | Address                                               | Phone          |
|---------------------------------|-------------------------------------------------------|----------------|
| Cook County                     | 2358 Hassell Rd, Suite B<br>Hoffman Estates, IL 60169 | (630) 584-8240 |
| Lake County &<br>McHenry County | 1648 S Eastwood Dr.<br>Woodstock, IL 60098            | (815) 338-0099 |



### **Implementation Milestones**

| Milestones                       | Description                                                                                                                     | Estimated Schedule                         |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Funding                          | Develop grant application(s)                                                                                                    | Short term: 1-2 years                      |
| Implement Short-term<br>Projects | Identify and implement short-term pilot<br>projects that can be completed (i.e. willing<br>landowners and available funding)    | Mid-term: 2-5 years                        |
| Monitoring                       | Implement monitoring plan                                                                                                       | Continuous: 1-20<br>years                  |
| Annual Stakeholder<br>meetings   | Stakeholders will convene once a year to gauge progress and discuss evolving needs and planned activities                       | Annually                                   |
| Implement Larger Projects        | Identify and implement larger projects.<br>These projects are more likely to have<br>multiple funding sources and stakeholders. | Mid- Term: 5-10<br>years                   |
| Education and outreach           | Prepare and implement and education and<br>outreach plan. Conduct at least two public<br>meetings annually.                     | Immediate and<br>Continuous: 1-20<br>years |
| CDM<br>Smith                     |                                                                                                                                 |                                            |

### **Monitoring Plan**

Tracking the implementation of management measures to address the following goals:

- Track implementation of BMPs in the watershed
- Estimate effectiveness
- Further monitoring of point source contributions
- Continued monitoring of impaired segments/tributaries under various flow scenarios
- Conduct an storm sewer surveys to assess contributions
- Monitor storm-based high flow events
- Low flow monitoring of total phosphorus, chloride, DO, TSS, and fecal coliform in impaired streams and Lakes
- Dry weather monitoring of stormwater outfalls



### **Monitoring Plan**

# Tracking the implementation of management measures to address the following goals:

- Determine the extent to which management measures and practices have been implemented compared to action needed to meet TMDL endpoints
- Establish a baseline from which decisions can be made regarding the need for additional incentives for implementation efforts
- Measure the extent of voluntary implementation efforts
- Support work-load and costing analysis for assistance or regulatory programs
- Determine the extent to which management measures are properly maintained and operated



### **Implementation Time Line**

- Should occur in phases
- Effectiveness should be measured along the way
- Funding takes time (months to years)
- Implementation after funding takes time (years)
- Results follow



### **Success Criteria**

- Implementing BMPs should lead to improved water quality and attainment of designated uses and water quality standards
- Key components of project success include:
  - Securing funding for priority projects within 5 years
  - Meeting milestones identified
  - Meeting 25-50% of target reductions within 10 years
  - Meeting 100% of target reductions within 20 years
  - Utilizing adaptive management to ensure best practices
  - Delisting of the impaired waterbodies



Project Contacts CDM Smith Brian Bennett bennettbj@cdmsmith.com

Kim Siemens siemensko@cdmsmith.com

### **Illinois EPA**

Abel Haile <u>Abel.Haile@Illinois.gov</u> http://www.epa.state.il.us/water/tmdl/report-status.html

